Python for Machine Learning & Data Science

0( 0 REVIEWS )
2 STUDENTS

Python for Machine Learning & Data Science

0( 0 REVIEWS )
2 STUDENTS

GET LIFETIME ACCESS TO ALL OUR COURSES FOR ONLY £199 £99 GET NOW

Python For Machine Learning & Data Science Take This Course

Course Overview

In this competitive job market, you need to have some specific skills and knowledge to start your career and establish your position. This Python for Machine Learning & Data Science will help you understand the current demands, trends and skills in the sector. The course will provide you with the essential skills you need to boost your career growth in no time.

The Python for Machine Learning & Data Science will give you clear insight and understanding about your roles and responsibilities, job perspective and future opportunities in this field. You will be familiarised with various actionable techniques, career mindset, regulations and how to work efficiently.

This course is designed to provide an introduction to Python for Machine Learning & Data Science and offers an excellent way to gain the vital skills and confidence to work toward a successful career. It also provides access to proven educational knowledge about the subject and will support those wanting to attain personal goals in this area.

Learning Outcomes

  • Know how to prepare the system and environment.
  • Learn the basics of Python.
  • Gain an in-depth understanding of Machine Learning.
  • Get a clear understanding of the job market and current demand
  • Understand data structures.
  • Familiarise yourself with NumPy and more.

Who is this Course for?

Whether you are a beginner or an existing practitioner, our CPD accredited Python for Machine Learning & Data Science is perfect for you to gain extensive knowledge about different aspects of the relevant industry to hone your skill further.

It is also great for working professionals who have acquired practical experience but require theoretical knowledge with a credential to support their skill, as we offer CPD accredited certification to boost up your resume and promotion prospects.

Entry Requirement

Anyone interested in learning more about this subject should take this Python for Machine Learning & Data Science. This course will help you grasp the basic concepts as well as develop a thorough understanding of the subject.

The course is open to students from any academic background, as there is no prerequisites to enrol on this course. The course materials are accessible from an internet enabled device at anytime of the day.

CPD Certificate from Course Gate

At the successful completion of the course, you can obtain your CPD certificate from us. You can order the PDF certificate for £9 and the hard copy for £15. Also, you can order both PDF and hardcopy certificates for £22.

Career path

The Python for Machine Learning & Data Science will help you to enhance your knowledge and skill in this sector. After accomplishing this course, you will enrich and improve yourself and brighten up your career in the relevant job market.

Course Curriculum

Course Overview & Table of Contents
Course Overview & Table of Contents 00:09:00
Introduction to Machine Learning - Part 1 - Concepts , Definitions and Types
Introduction to Machine Learning – Part 1 – Concepts , Definitions and Types 00:05:00
Introduction to Machine Learning - Part 2 - Classifications and Applications
Introduction to Machine Learning – Part 2 – Classifications and Applications 00:06:00
System and Environment preparation - Part 1
System and Environment preparation – Part 1 00:04:00
System and Environment preparation - Part 2
System and Environment preparation – Part 2 00:06:00
Learn Basics of python - Assignment
Learn Basics of python – Assignment 1 00:10:00
Learn Basics of python - Assignment
Learn Basics of python – Assignment 2 00:09:00
Learn Basics of python - Functions
Learn Basics of python – Functions 00:04:00
Learn Basics of python - Data Structures
Learn Basics of python – Data Structures 00:12:00
Learn Basics of NumPy - NumPy Array
Learn Basics of NumPy – NumPy Array 00:06:00
Learn Basics of NumPy - NumPy Data
Learn Basics of NumPy – NumPy Data 00:08:00
Learn Basics of NumPy - NumPy Arithmetic
Learn Basics of NumPy – NumPy Arithmetic 00:04:00
Learn Basics of Matplotlib
Learn Basics of Matplotlib 00:07:00
Learn Basics of Pandas - Part 1
Learn Basics of Pandas – Part 1 00:06:00
Learn Basics of Pandas - Part 2
Learn Basics of Pandas – Part 2 00:07:00
Understanding the CSV data file
Understanding the CSV data file 00:09:00
Load and Read CSV data file using Python Standard Library
Load and Read CSV data file using Python Standard Library 00:09:00
Load and Read CSV data file using NumPy
Load and Read CSV data file using NumPy 00:04:00
Load and Read CSV data file using Pandas
Load and Read CSV data file using Pandas 00:05:00
Dataset Summary - Peek, Dimensions and Data Types
Dataset Summary – Peek, Dimensions and Data Types 00:09:00
Dataset Summary - Class Distribution and Data Summary
Dataset Summary – Class Distribution and Data Summary 00:09:00
Dataset Summary - Explaining Correlation
Dataset Summary – Explaining Correlation 00:11:00
Dataset Summary - Explaining Skewness - Gaussian and Normal Curve
Dataset Summary – Explaining Skewness – Gaussian and Normal Curve 00:07:00
Dataset Visualization - Using Histograms
Dataset Visualization – Using Histograms 00:07:00
Dataset Visualization - Using Density Plots
Dataset Visualization – Using Density Plots 00:06:00
Dataset Visualization - Box and Whisker Plots
Dataset Visualization – Box and Whisker Plots 00:05:00
Multivariate Dataset Visualization - Correlation Plots
Multivariate Dataset Visualization – Correlation Plots 00:08:00
Multivariate Dataset Visualization - Scatter Plots
Multivariate Dataset Visualization – Scatter Plots 00:05:00
Data Preparation (Pre-Processing) - Introduction
Data Preparation (Pre-Processing) – Introduction 00:09:00
Data Preparation - Re-scaling Data - Part 1
Data Preparation – Re-scaling Data – Part 1 00:09:00
Data Preparation - Re-scaling Data - Part 2
Data Preparation – Re-scaling Data – Part 2 00:09:00
Data Preparation - Standardizing Data - Part 1
Data Preparation – Standardizing Data – Part 1 00:07:00
Data Preparation - Standardizing Data - Part 2
Data Preparation – Standardizing Data – Part 2 00:04:00
Data Preparation - Normalizing Data
Data Preparation – Normalizing Data 00:08:00
Data Preparation - Binarizing Data
Data Preparation – Binarizing Data 00:06:00
Feature Selection - Introduction
Feature Selection – Introduction 00:07:00
Feature Selection - Uni-variate Part 1 - Chi-Squared Test
Feature Selection – Uni-variate Part 1 – Chi-Squared Test 00:09:00
Feature Selection - Uni-variate Part 2 - Chi-Squared Test
Feature Selection – Uni-variate Part 2 – Chi-Squared Test 00:10:00
Feature Selection - Recursive Feature Elimination
Feature Selection – Recursive Feature Elimination 00:11:00
Feature Selection - Principal Component Analysis (PCA)
Feature Selection – Principal Component Analysis (PCA) 00:09:00
Feature Selection - Feature Importance
Feature Selection – Feature Importance 00:06:00
Refresher Session - The Mechanism of Re-sampling, Training and Testing
Refresher Session – The Mechanism of Re-sampling, Training and Testing 00:12:00
Algorithm Evaluation Techniques - Introduction
Algorithm Evaluation Techniques – Introduction 00:07:00
Algorithm Evaluation Techniques - Train and Test Set
Algorithm Evaluation Techniques – Train and Test Set 00:11:00
Algorithm Evaluation Techniques - K-Fold Cross Validation
Algorithm Evaluation Techniques – K-Fold Cross Validation 00:09:00
Algorithm Evaluation Techniques - Leave One Out Cross Validation
Algorithm Evaluation Techniques – Leave One Out Cross Validation 00:05:00
Algorithm Evaluation Techniques - Repeated Random Test-Train Splits
Algorithm Evaluation Techniques – Repeated Random Test-Train Splits 00:07:00
Algorithm Evaluation Metrics - Introduction
Algorithm Evaluation Metrics – Introduction 00:09:00
Algorithm Evaluation Metrics - Classification Accuracy
Algorithm Evaluation Metrics – Classification Accuracy 00:08:00
Algorithm Evaluation Metrics - Log Loss
Algorithm Evaluation Metrics – Log Loss 00:03:00
Algorithm Evaluation Metrics - Area Under ROC Curve
Algorithm Evaluation Metrics – Area Under ROC Curve 00:06:00
Algorithm Evaluation Metrics - Confusion Matrix
Algorithm Evaluation Metrics – Confusion Matrix 00:10:00
Algorithm Evaluation Metrics - Classification Report
Algorithm Evaluation Metrics – Classification Report 00:04:00
Algorithm Evaluation Metrics - Mean Absolute Error - Dataset Introduction
Algorithm Evaluation Metrics – Mean Absolute Error – Dataset Introduction 00:06:00
Algorithm Evaluation Metrics - Mean Absolute Error
Algorithm Evaluation Metrics – Mean Absolute Error 00:07:00
Algorithm Evaluation Metrics - Mean Square Error
Algorithm Evaluation Metrics – Mean Square Error 00:03:00
Algorithm Evaluation Metrics - R Squared
Algorithm Evaluation Metrics – R Squared 00:04:00
Classification Algorithm Spot Check - Logistic Regression
Classification Algorithm Spot Check – Logistic Regression 00:12:00
Classification Algorithm Spot Check - Linear Discriminant Analysis
Classification Algorithm Spot Check – Linear Discriminant Analysis 00:04:00
Classification Algorithm Spot Check - K-Nearest Neighbors
Classification Algorithm Spot Check – K-Nearest Neighbors 00:05:00
Classification Algorithm Spot Check - Naive Bayes
Classification Algorithm Spot Check – Naive Bayes 00:04:00
Classification Algorithm Spot Check - CART
Classification Algorithm Spot Check – CART 00:04:00
Classification Algorithm Spot Check - Support Vector Machines
Classification Algorithm Spot Check – Support Vector Machines 00:05:00
Regression Algorithm Spot Check - Linear Regression
Regression Algorithm Spot Check – Linear Regression 00:08:00
Regression Algorithm Spot Check - Ridge Regression
Regression Algorithm Spot Check – Ridge Regression 00:03:00
Regression Algorithm Spot Check - Lasso Linear Regression
Regression Algorithm Spot Check – Lasso Linear Regression 00:03:00
Regression Algorithm Spot Check - Elastic Net Regression
Regression Algorithm Spot Check – Elastic Net Regression 00:02:00
Regression Algorithm Spot Check - K-Nearest Neighbors
Regression Algorithm Spot Check – K-Nearest Neighbors 00:06:00
Regression Algorithm Spot Check - CART
Regression Algorithm Spot Check – CART 00:04:00
Regression Algorithm Spot Check - Support Vector Machines (SVM)
Regression Algorithm Spot Check – Support Vector Machines (SVM) 00:04:00
Compare Algorithms - Part 1 : Choosing the best Machine Learning Model
Compare Algorithms – Part 1 : Choosing the best Machine Learning Model 00:09:00
Compare Algorithms - Part 2 : Choosing the best Machine Learning Model
Compare Algorithms – Part 2 : Choosing the best Machine Learning Model 00:05:00
Pipelines : Data Preparation and Data Modelling
Pipelines : Data Preparation and Data Modelling 00:11:00
Pipelines : Feature Selection and Data Modelling
Pipelines : Feature Selection and Data Modelling 00:10:00
Performance Improvement: Ensembles - Voting
Performance Improvement: Ensembles – Voting 00:07:00
Performance Improvement: Ensembles - Bagging
Performance Improvement: Ensembles – Bagging 00:08:00
Performance Improvement: Ensembles - Boosting
Performance Improvement: Ensembles – Boosting 00:05:00
Performance Improvement: Parameter Tuning using Grid Search
Performance Improvement: Parameter Tuning using Grid Search 00:08:00
Performance Improvement: Parameter Tuning using Random Search
Performance Improvement: Parameter Tuning using Random Search 00:06:00
Export, Save and Load Machine Learning Models : Pickle
Export, Save and Load Machine Learning Models : Pickle 00:10:00
Export, Save and Load Machine Learning Models : Joblib
Export, Save and Load Machine Learning Models : Joblib 00:06:00
Finalizing a Model - Introduction and Steps
Finalizing a Model – Introduction and Steps 00:07:00
Finalizing a Classification Model - The Pima Indian Diabetes Dataset
Finalizing a Classification Model – The Pima Indian Diabetes Dataset 00:07:00
Quick Session: Imbalanced Data Set - Issue Overview and Steps
Quick Session: Imbalanced Data Set – Issue Overview and Steps 00:09:00
Iris Dataset : Finalizing Multi-Class Dataset
Iris Dataset : Finalizing Multi-Class Dataset 00:09:00
Finalizing a Regression Model - The Boston Housing Price Dataset
Finalizing a Regression Model – The Boston Housing Price Dataset 00:08:00
Real-time Predictions: Using the Pima Indian Diabetes Classification Model
Real-time Predictions: Using the Pima Indian Diabetes Classification Model 00:07:00
Real-time Predictions: Using Iris Flowers Multi-Class Classification Dataset
Real-time Predictions: Using Iris Flowers Multi-Class Classification Dataset 00:03:00
Real-time Predictions: Using the Boston Housing Regression Model
Real-time Predictions: Using the Boston Housing Regression Model 00:08:00
Resources
Resources – Python for Machine Learning & Data Science 00:00:00
Certificate and Transcript
Order Your Certificates or Transcripts 00:00:00
Python for Machine Learning & Data Science

Course Reviews

N.A

ratings
  • 5 stars0
  • 4 stars0
  • 3 stars0
  • 2 stars0
  • 1 stars0

No Reviews found for this course.

Python For Machine Learning & Data Science Take This Course

Share Link on svg

Instructors

© Course Gate Edukite Ltd, Reg no: 11378092

0
Your Cart

Upgrade to get UNLIMITED ACCESS to ALL COURSES for only £49.00per year

ADD OFFER TO CART

No more than 50 active courses at any one time. Membership renews after 12 months. Cancel anytime from your account. Certain courses are not included. Can't be used in conjunction with any other offer.